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EFFECTIVE GROUNDWATER MODEL 
CALIBRATION: With Analysis Of Data, Sensitivities, 
Predictions, and Uncertainty 
By Mary C. Hill and Claire R. Tiedeman 
Answers to Problems Posed in the Exercises 
This document contains the answers to the Problems posed in the exercises at the ends of 
Chapters 1 through 8. The questions posed in the Problems are not repeated here; refer to 
the book for these questions. Answers to Problems in the exercises of Chapter 9 are not 
included because these exercises are optional.  

Exercise 3.2c: Check simulated values. 
No. The residuals in Table 3-3 suggest that there is no data input error. There are no 
residuals that are significantly larger in absolute magnitude than the others. 

Exercise 3.2d: Calculate weights on hydraulic-head and flow observations  
For the head observations, first calculate the total variance of measurement error for the 
head observations, by adding the variance for the elevation measurement and the variance 
for the water-level measurement. This total variance is 1.0025 m2, as shown in Table 3.2. 
Then, calculate the weight as the inverse of this variance, which equals 0.9975 m-2. In the 
table ‘DATA AT HEAD LOCATIONS’ in the MODFLOW-2000 LIST output file, note 
that the square root of the weight (0.9988 m-1) is printed. 

For the flow observation, first calculate the standard deviation of measurement error by 
multiplying the coefficient of variation by the observed value: σ = 0.10 × (-4.4 m3/d) =  
-0.44 m3/d. Then calculate the variance by squaring the standard deviation: σ2 = 0.1936 
m6/d2. Finally, calculate the weight for the flow observation as the inverse of this 
variance, which equals 5.165 d2/m6. Again, note that the square root of the weight (2.27 
d/m3 is printed in the table ‘DATA FOR FLOWS REPRESENTED USING THE RIVER 
PACKAGE’ of the MODFLOW-2000 LIST output file. 

Exercise 3.3: Evaluate model fit using starting parameter values 
Initial model fit: 

The model fit with the starting parameter values shows that the simulated heads at almost 
all observation locations are larger than the observed values. This suggests bias in the fit, 
in that there is a systematic overprediction of the observed values. The weighted residual 
for the flow observation is small, indicating a good fit to the flow data.  

Comparison of residuals and weighted residuals: 

For the head observations, the residuals are essentially equal to the weighted residuals, 
because the square root of the weights for these observations is equal to about 1.0. For the 
flow observation, the weighted residual is larger than the residual, because the square 
root of the weight is 2.27. 
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Exercise 4.1b: Use dimensionless and composite scaled sensitivities (dss and css) to 
evaluate observations and defined parameters  
Using dss to identify observations most important to estimation of parameter HK_1: 

The scaled sensitivities of Table 4.1 indicate that observations hd02.ss, hd03.ss, hd04.ss, 
hd05.ss, hd06.ss, hd08.ss, hd09.ss, and hd10.ss are much more important to estimation of 
HK_1 than are observations hd01.ss, hd07.ss or flow.ss. Observation hd09.ss has the 
largest dss (in absolute value) and by this measure, provides the most information about 
parameter HK_1. 

To explain the sensitivities using knowledge of the flow system dynamics, first consider 
how sensitivities are calculated. For perturbation sensitivities, parameter values are 
perturbed, the flow model is executed, and the change in dependent variable (here, 
hydraulic head or flow) is computed. The change in the dependent variable is then 
divided by the parameter perturbation. In MODFLOW-2000, sensitivities are computed 
by the sensitivity-equation method (Hill, 2000, p. 67-71), by which sensitivities are 
obtained by numerically solving the derivative of the flow equation. Regardless of which 
method is used to calculate the sensitivities, a good way to understand them is to think of 
the sensitivities as the change in hydraulic head or flow that occurs in response to a 
perturbation in the parameter value. This approach is used to answer the exercises related 
to sensitivities.  

The sensitivity of the simulated river discharge to HK_1 is very small, because the river 
is the only discharge location in the flow system, and the primary source of water to the 
system is specified areal recharge. Thus, regardless of the value of HK_1, simulated flow 
to the river will approximately equal the recharge. If recharge were the sole source of 
water to the flow system, then river discharge would exactly equal the areal recharge, and 
the sensitivity of the river discharge to HK_1 would be zero. However, there is a small 
amount of water entering the aquifer through the head-dependent boundary with the 
adjoining hillside. This influx has a very small influence on the flow system, but can vary 
in response to changes in HK_1, which in turn causes the river discharge to have a non-
zero sensitivity with respect to HK_1.  

To understand the insensitivity of the simulated equivalent of observation hd01.ss to 
HK_1, consider its location (see Figure 2.1b). Observation hd01.ss is located in layer 1 
directly below the river. All water that discharges to the river must flow through column 
1 of layer 1. The river discharge is a function of K_RB and the difference between the 
river stage (which is constant) and the hydraulic head in layer 1, and approximately 
equals the specified areal recharge, as noted above. Thus, to maintain a similar river 
discharge in response to a change in HK_1, the hydraulic head in layer 1 beneath the 
river must remain approximately the same. The sensitivity of the simulated equivalent of 
observation hd01.ss to HK_1 is not exactly equal to zero because the flow into the system 
through the hillside boundary varies slightly in response to changes in HK_1, as 
discussed above. 

Observation hd07.ss is located in layer 2 directly below the river (see Figure 2.1b). The 
sensitivity of its simulated equivalent to HK_1 is greater than that for observation 1 
because all of the river discharge does not need to flow through layer 2. Nonetheless, the 
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head at the observation hd07.ss cell is strongly controlled by the overlying river, resulting 
in a smaller sensitivity to HK_1 than at most other locations.  

Using css to assess likelihood of estimating all parameters: 

Parameter HK_1 has the largest composite scaled sensitivity, and the css for parameters 
HK_1, HK_2, RCH_1, and RCH_2 are also relatively large. The css for K_RB is more 
than two orders of magnitude smaller than that for HK_1 and the css for VK_CB is 
almost two orders of magnitude smaller than that for HK_1, indicating that the regression 
might have difficulty estimating these two parameters.  

Exercise 4.1c. Evaluate parameter correlation coefficients (pcc) to assess parameter 
uniqueness. 
Parameter pairs with pcc greater than 0.90 or 0.95: 

When the flow observation is included, the pcc is greater than 0.90 for parameter pairs 
HK_1 & RCH_1 (pcc=0.95) and HK_2 & RCH_2 (pcc=0.98). 

Likelihood of being able to independently estimate all parameters: 

The pcc value for pair HK_2 – RCH_2 suggests that it may be difficult to independently 
estimate these two parameters. 

Explanation of why all the parameters are extremely correlated when only hydraulic-
head observations are included: 

Darcy’s Law can be used to understand the extreme parameter correlation that results 
when only hydraulic-head observations are included. Equation 1.1 in Section 1.4.1 
presents the one-dimensional form of Darcy’s Law, and equation 1.2 shows Darcy’s Law 
rearranged and solved for hydraulic head. Equation 1.2 clearly shows that the calculated 
head is a function of the ratio Q/K, and thus the same value of h can be computed from 
numerous different values of parameters Q (e.g. recharge) and K, as long as the ratio Q/K 
remains the same. In the weighted least squares objective function with weights set to 
constants, simulated values at observation locations are the only terms that are a function 
of the parameter values. Thus, when only hydraulic-head observations are included and 
all important parameters related to the flows and hydraulic conductivities of the system 
are being estimated by the regression, the same value of the objective function can be 
calculated from numerous combinations of the parameters. In other words, there is no set 
of unique parameter values that produce simulated values equal or close to the observed 
head values. This principle also applies to simulated hydraulic heads in more complex 
ground-water flow models, because the equations solved are based on Darcy’s Law.  

Reason why the correlation coefficients calculated by UCODE_2005  are unable to 
capture the extreme parameter correlation when using only hydraulic-head observations: 

The correlation coefficients calculated by the perturbation method are not as accurate as 
those produced by MODFLOW’s sensitivity-equation method. This inaccuracy generally 
is most pronounced when the actual pcc are very close or equal to 1.0, as in this exercise. 
As discussed in Section 4.4.2, correlation coefficient accuracy tends to decrease as 
parameter sensitivity decreases, which explains why the pcc are least accurate for pairs 
involving parameter K_RB. 
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Exercise 4.1d. Use contour maps of one-percent sensitivities for the steady-state flow 
system. 
Reasons why sensitivities for HK_1 and HK_2 are negative and why sensitivities for 
HK_1 are larger (in absolute value) than those for HK_2: 

Figure 4.4a shows that the one-percent scaled sensitivities of steady-state hydraulic heads 
in layer 1 to HK_1 are near zero at the river, for reasons given in the answer to Exercise 
4.1b. Away from the river, the sensitivity is negative, and increases in absolute value 
quickly, and then more slowly, with distance from the river. The negative values indicate 
that in response to an increase in HK_1, heads will decline. The increase in absolute 
value with distance from the river indicates that the amount of decline increases with 
distance from the river, resulting in a flattening of the lateral hydraulic gradient through 
layer 1.  

The underlying physics that result in the negative HK_1 sensitivities can be explained by 
considering the flux through any cross section parallel to the river in layer 1. The flux 
QA,lay1 through the area Alay1 = Δx × Δy can be calculated using Darcy’s Law as  
QA,lay1 = -HK_1×Alay1×((h2-h1)/Δx). All water in the system flows toward the river, so 
QA,lay1 also equals the flux that has entered the system upgradient of Alay1 (from recharge 
and inflow at the hillside), minus the flux through layer 2. As noted in the answer to 
Exercise 4.1b, almost all flux in the system originates as constant recharge. Therefore, in 
response to an increase in HK_1, the flux QA,lay1 will change only if the flux through 
layer 2 changes. Assuming that the change in layer 2 flux is small, (h2-h1)/Δx must 
decrease by the same amount that HK_1 increases, for QA,lay1 to remain constant. Because 
the head at the river is essentially invariant (see answer to Exercise 4.1b), this decrease in 
(h2-h1)/Δx is achieved by decreasing h1 more than h2. These decreases in heads in 
response to an increase in HK_1 cause the negative sensitivities.  

 
 

Qrecharge 

Only layer 1 shown 

Before increasing HK_1 
After increasing HK_1 

h1 h2 

Δx 

Δz 
QA,lay1 

 
Figure 1. Schematic cross section through layer 1 of the steady-state model, showing the 

hydraulic gradient before and after increasing parameter HK_1.  

The one-percent sensitivities of hydraulic heads in layer 2 to HK_1 are very similar to the 
sensitivities in layer 1 to HK_1 (Figure 4.4a). This is because the vertical hydraulic 
conductivity of the confining bed controls flow between the two layers, and this 
parameter value stays the same when HK_1 is increased. Therefore, heads in layer 2 must 
change by a similar amount as in layer 1, to produce the same fluxes between model 
layers and through layer 2. 
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The explanation for the negative one-percent sensitivities of hydraulic heads in layer 2 to 
HK_2 (fig. 4.4b) is similar to that for the sensitivities of heads in layer 1 to HK_1. 
Consider the flux through the area A within a cross section parallel to the river in layer 2. 
This flux is QA,lay2 = -HK_2×Alay2×(∂h/∂x), and equals the cumulative flux that has 
entered layer 2 through the confining layer upgradient of Alay2, plus the influx from the 
hillside to layer 2, which is very small. If HK_2 is increased, then the hydraulic gradient 
in layer 2 must decrease for QA,lay2 to remain the same, assuming that the vertical fluxes 
do not change substantially. This decrease in hydraulic gradient is achieved by greater 
head declines with distance from the river, as explained above.  

The one-percent scaled sensitivities for HK_1 are larger than those for HK_2 because the 
starting value of HK_1 is larger than that of HK_2. Again consider Darcy’s Law for flux 
through cross sections in layers 1 and 2. In layer 1, QA,lay1 = -HK_1×Alay1×(∂h/∂x); 
increasing HK_1 by one-percent of its value means that ∂h/∂x needs to decrease by this 
same amount to maintain similar horizontal flows through layer 1. In layer 2, QA,lay2 = -
HK_2×Alay2×(∂h/∂x); increasing HK_2 by one-percent of its value means that ∂h/∂x 
needs to decrease by this amount to maintain similar horizontal flows through layer 2. 
Because HK_1 is greater than HK_2, the required decrease in gradient in layer 1 is larger 
than that in layer 2. 

Reason why sensitivities for RCH_1 and RCH_2 are positive and why those for RCH_1 
only vary over the left half of the system, whereas those for RCH_2 vary over the entire 
domain: 

To understand the one-percent sensitivities of hydraulic head in layers 1 and 2 to the 
recharge parameters (Figures 4.4e,f), note that an increase in recharge will cause a 
corresponding increase in the flux through the system toward the river. To convey this 
increased flux, the hydraulic gradient towards the river must become steeper. This 
requires hydraulic head to increase more and more with distance from the river, which 
explains the positive sensitivity values. 

An increase in parameter RCH_1, which applies to the left half of the aquifer, causes the 
hydraulic gradient to become steeper only over the left half of the aquifer. In the right 
half of the aquifer, the hydraulic gradient is unchanged because flow through the system 
has not increased. In contrast, although RCH_2 applies only to the right half of the 
aquifer, an increase in this parameter affects fluxes throughout the aquifer, because the 
additional recharge must flow through the left half of the aquifer to reach the river.  

Explanation of VK_CB sensitivities: 
The one-percent sensitivities of hydraulic head in layers 1 and 2 to VK_CB (Figure 4.4d) 
exhibit very different patterns. In layer 1, the sensitivity is near zero at the river to 
maintain the unchanged discharge to the river. To the right of the river, the sensitivities 
are negative, and increase in absolute value with distance from the river, indicating that 
the lateral hydraulic gradient through layer 1 flattens in response to an increase in 
VK_CB. This is because if VK_CB is increased, more of the recharge will flow into layer 
2 of the model, and, consequently, less will be conveyed to the river through layer 1. In 
layer 2, the one-percent sensitivity of heads to VK_CB is negative at the river, and 
becomes smaller in absolute value with distance from the river. This pattern indicates that 
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the hydraulic gradient through layer 2 becomes steeper in response to an increase in 
VK_CB, as needed to convey the increased flow through layer 2. 

Reason why sensitivities for K_RB are constant throughout the system: 

The one-percent sensitivities of hydraulic heads to K_RB (fig. 4.4c) are the same at all 
model nodes. Discharge to the river through riverbed area ARB is 
QRB=- K_RB×ARB×((haq-Hriv)/Δz), where haq is the simulated head in the river cells, and 
Hriv is the river stage. QRB also equals the sum of specified areal recharge and the much 
smaller flux from the hillside. In response to an increase in K_RB, simulated head in the 
river cells decreases so that (haq-Hriv)/Δz decreases and QRB remains approximately the 
same. All other fluxes within the aquifer must also remain the same because recharge is 
not changed. This is achieved by maintaining the same hydraulic gradients throughout the 
system, which in turn is achieved by changing head at all model nodes by the same 
amount as at the river nodes. This is depicted schematically in Figure 2. 

 
 

Qrecharge 

QRB = K_RB×ARB×[(haq - Hriv)/Δz] 
 Only layer 1 shown 

Before increasing K_RB 
After increasing K_RB  

Figure 2. Schematic cross section through layer 1 of the steady-state model, showing the 
hydraulic gradient before and after increasing parameter K_RB. 

Exercise 4.1e. Evaluate leverage statistics. 
Parameters with largest dimensionless scaled sensitivities: 

For observations flow01.ss and hd01.ss, the dss are small for all parameters. For 
observation hd07.ss, the dss for parameter VK_CB is large, but the dss for all other 
parameters are small. For observation hd09.ss, the dss for parameters HK_1, HK_2, 
RCH_1, and RCH_2 are large.    

Evaluation of whether high leverage observations are dominated by sensitivity or 
correlation considerations: 

For flow01.ss and hd01.ss, the dss values clearly indicate that the high leverage values 
are not dominated by sensitivity considerations. These observations have high leverage 
values because they prevent large correlations. The role of flow01.ss in preventing large 
correlations is explained in the answer to Exercise 4.1c. The role of hd01.ss in preventing 
large correlations is illustrated in Table 1 below. Comparison of this table with Table 4.2 
shows that when this observation is omitted, the absolute values of all correlations 
between all parameters except VK_CB increase substantially. 
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Table 1. Parameter correlation coefficient (pcc) matrix calculated with 9 hydraulic-head 
observations (hd01.ss is omitted) and 1 flow observation. 

 HK_1 K_RB VK_CB HK_2 RCH_1 RCH_2 

HK_1 1.00 -0.96 0.50 -0.97 0.98 -0.94 

K_RB  1.00 -0.67 0.94 -0.89 0.90 

VK_CB   1.00 -0.40 0.35 -0.33 

HK_2  symmetric  1.00 -0.96 0.99 

RCH_1     1.00 -0.95 

RCH_2      1.00 

 
Observation hd01.ss prevents large correlations because it constrains the value of 
simulated head in the river cells, which in turn constrains the value of parameter K_RB. 
The flux out the river is: QRB = -K_RB×ARB×((haq-Hriv)/Δz), where haq is the simulated 
head in the river cells, and Hriv is the river stage (see answer to Exercise 4.1d). Without 
observation hd01.ss to constrain the value of haq, multiple combinations of haq and K_RB 
will produce the same value of QRB.   

Observation hd07.ss is located beneath the river in layer 2 (Figure 2.1b), and has large 
leverage because it helps constrain fluxes in the cells beneath the river. The flux into 
column 1 of layer 1 is the sum of (A) the applied recharge in column 1, (B) the horizontal 
inflow from column 2, and (C) the vertical inflow from layer 2 (see Figure 4.5). 
Observation hd07.ss partly constrains the value of component (C), because together with 
observation hd01.ss, it constrains the vertical gradient from layer 1 to layer 2. This 
constraint on component (C) in turn constrains component (B), because component (A) is 
fixed. If this observation were absent, there would be less constraint on how much flux is 
apportioned between components (2) and (3). Interestingly, observation hd07.ss alone 
does not appear to prevent large correlations; removing it from the calculation does not 
significantly increase any of the pcc values. This is discussed further in the answer to 
Exercise 7.1b. 

Observation hd09.ss has large leverage because it has dimensionless scaled sensitivities 
for parameters HK_1, HK_2, RCH_1, and RCH_2 that are equal to or larger than those of 
any other observations (Table 4.1), owing to its distant location from the river.  

Exercise 5.1a. Assess relation of objective-function surfaces to parameter 
correlation coefficients 
Using Darcy’s Law to explain complete correlation of parameters when only hydraulic-
head observations are used: 

This explanation is given in the answer to Exercise 4.1c. Note also that for the two-
parameter problem, the simulated heads are a function of the exact ratio of 
RchMult/Kmult (Q/K in equation 1.2), as indicated by objective-function contours that 
have a slope of 1.0 (Fig. 5.4a). In general, for more complex groundwater models with 
several hydraulic conductivity and recharge parameters, simulated heads are a function of 
a linear combination of these parameters.  

Adding a single flow observation: 
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Adding one flow observation prevents the problem from being completely correlated 
because in this case, the objective function depends on the simulated equivalents of both 
the head and the flow observations. Although simulated heads are still a function of the 
ratio RchMult/KMult, simulated discharge to the river is a function only of RchMult. 
Thus, if RchMult and KMult vary but their ratio remains constant, the simulated river 
discharge will vary and different objective-function values will be calculated. In fact, the 
value of RchMult completely determines this simulated value, because areal recharge is 
the major influx to the flow system, and the river is the sole discharge boundary. Thus, in 
the regression, the estimate of RchMult is completely dependent on the value of observed 
flow to the river, which means that any error in the flow measurement is directly 
propagated to the RchMult estimate. Because of this, several flow measurements should 
ideally be included in regressions of ground-water flow models. 

Objective function contours parallel to one axis: 

If the objective function contours were all parallel to one axis, the problem would be 
insensitivity. For example, contours parallel to the RCH_MULT axis in Figure 5.4 would 
indicate that the objective function is dependent only on parameter RCH_MULT, and 
completely independent of, and insensitive to, the value of K_MULT.  

Exercise 5.1b. Examine the performance of the modified Gauss-Newton method  
Convergence and regression performance for the different runs: 

In Run 1, the starting parameter values are near those that minimize the true objective 
function surface, and the regression converges even though max-allowed-change is very 
large. This is because in the vicinity of these starting parameter values, the linearized 
objective function resembles the true objective function.  

In Run 2, the starting parameter values are far from those that minimize the true objective 
function surface and max-allowed-change is very large. The parameters determined by 
the regression do not smoothly progress to the true minimum and convergence fails. 
Performing nonlinear regression to determine parameter values that minimize the true 
objective function involves a series of iterations in which the values are determined for a 
linearized form of the objective function. The values that minimize this function can be 
determined in a single iteration. Although this function resembles the true objective 
function surface in the vicinity of the parameter values around which it is linearized, 
further away it can deviate substantially from the true function. Thus, when the 
parameters around which the function is linearized are very different from those that 
minimize the true objective function and max-allowed-change is very large, the 
parameter values calculated by the regression might not progress closer to the minimum 
of the true objective function. 

In Run 3, max-allowed-change is decreased to 0.5, so the allowed change in parameter 
values from one iteration to the next is a maximum of 50 percent. Even with starting 
values that are still very different from those that minimize the true objective function, 
the regression is well-behaved because the parameter changes are damped. At each 
iteration, the regression is allowed to proceed only part way toward the minimum of the 
linearized surface, and thus proceeds gradually toward the minimum of the true surface in 
a few iterations.  
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Finally, in Run 4, with small max-allowed-change and starting parameter values that are 
in an area of the objective function surface that slopes steeply toward the true minimum, 
the regression is very well-behaved and proceeds quickly to the true minimum. 

Estimated parameter values, uniqueness, and regression performance for the different 
observation types and weightings: 

For the first set of runs, with only hydraulic heads, the regression ‘converges’ to different 
sets of ‘optimal’ parameter estimates for different starting parameter values because there 
is no unique minimum in the objective-function surface (and thus no set of optimal 
parameter estimates). Instead, there is a trough in the surface, the bottom of which is 
defined by a line that represents the nonunique minima of the surface. An infinite number 
of combinations of RchMult and Kmult result in an objective function value on this line. 
Run 1 ‘converges’ quickly because the starting parameter values are close to the trough 
that defines the minima of the true surface in Figure 5.4a, even though max-allowed-
change is large. In Run 2, the parameter values in iterations 2 through 10 are outside the 
boundaries of Figure 5.4a. With a very large value of max-allowed-change, the regression 
moves to the minimum of the objective function surface that is linearized about K_Mult = 
9.0 and Rch_Mult = 0.2. This minimum is extremely far from these starting parameter 
values, and the changed parameter values are highly unreasonable. Once the regression 
has moved into this region, the minima of subsequent objective function surfaces 
linearized about the unreasonable parameter values remain far away. In Run 3, the 
regression behavior is better because max-allowed-change is small. However, the 
‘optimal’ parameter estimates are different from those in Run 1 because the parameter 
values progressed to a different part of the trough than in Run 1. In Run 4, the starting 
values are far from the true values but in an area of the objective function surface with a 
much steeper gradient than in Run 3, and the regression converges to parameter estimates 
in the part of the trough that is downgradient (in objective function space) from the 
starting values.  

The result that the regression iterations converged to different parameter values in Run 3 
than in Run 1 and Run 4 indicates that the regression cannot estimate a unique set of 
optimal parameters for this problem. This illustrates the importance of performing 
regression runs with different starting parameter values if high correlations are suspected, 
to test whether the parameter estimates are unique. This is especially important when 
using perturbation sensitivities, because, as discussed in Chapter 4.4.2, the less accurate 
perturbation sensitivities computed can produce inaccurate parameter correlation 
coefficients that do not reveal the actual high correlations. In this case, the only reliable 
way to detect problems with parameter correlation is to start the regression with different 
initial parameter values, and check that it converges back to the same optimal parameter 
estimates each time.  

For the second set of runs, with hydraulic head observations and flow observations 
weighted with a coefficient of variation of 10 percent, the objective function has a unique 
minimum and Runs 1, 3, and 4 all converge to the same set of optimal parameter 
estimates. In Run 2, in which the starting parameter values are in a very flat area of the 
objective function surface, the regression behavior is similar to that for the case with only 
hydraulic-head observations. Even for parameter estimation problems that have a unique 
minimum and for which a small value of max-allowed-change is used, the regression can 
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be ill-behaved when the starting values are in a flat area very far from the optimal 
estimates.  

For the third set of runs, with hydraulic head observations and flow observations 
weighted with a coefficient of variation of 1 percent, the regression behavior of all runs is 
essentially the same as for the second set of runs. In this problem, the objective function 
surface has a much better defined minimum than that for the problem with a flow 
observation of 10 percent (Figure 5-4), but away from this minimum, the surface is still 
very flat in the lower right corner. Thus, in Run 2, the parameter values are still well 
outside the bounds of the figure, and the regression does not converge. 

Exercise 5.1c. Derive the Gauss-Newton normal equations (optional)  
The following derivation is modified from that given by Draper and Smith (1998, p. 135). 

Substituting equation 5-11 into equation 3-2 produces the following: 

S(b) = [y – y′ (br) - Xr (b- br)]T ω [y – y′ (br) - Xr (b- br)]   

Let the expression y – y′ (br) = yr, for simplification of terminology throughout the 
derivation : 

S(b) = [yr - Xr (b- br)]T ω [yr - Xr (b- br)]   

To minimize S(b), take its derivative with respect to b, and set this derivative equal to 0:  

b∂
∂ [(yr - Xr (b- br))T ω (yr - Xr (b- br))] =0 

 

Expanding the expression in brackets, and evoking the matrix multiplication rule 
(AB)T=BTAT: 

b∂
∂  [(yr

 T - (b- br)TXr
T) (ωyr - ωXr (b- br))] =0 

 

And: 

b∂
∂  [yr

 Tω yr - yr
 TωXr (b- br)-(b- br)TXr

T ω yr +(b- br)TXr
TωXr (b- br)] =0 

 

Because the term (b- br)TXr
Tω yr is a scalar, it equals its transpose, which is yr

TωTXr (b- 
br). Also, ω = ωT because the weight matrix is symmetric. Thus, the middle 2 terms of the 
above equation are equal :  

b∂
∂  [yr

 Tω yr -2(b- br)TXr
T ω yr +(b- br)TXr

TωXr (b- br)] =0 
 

Furthermore, 
b∂

∂ [yr
 Tω yr] =0 because yr and ω are not functions of b, so the derivative 

reduces to: 

b∂
∂  [ -2(b- br)TXr

Tω yr +(b- br)TXr
TωXr (b- br)] =0 

 



 11

Because 
b∂

∂ br =0, this reduces to: 

b∂
∂  [ -2 bTXr

Tω yr +(b- br)TXr
TωXr (b- br)] =0 

 

Taking the derivative of each term produces: 

- 2Xr
Tω yr + 2 Xr

TωXr(b- br)=0  

This yields: 

  Xr
TωXr(b- br)= Xr

Tω yr  

Substituting the expressions yr = y – y′ (br) and dr = b- br produces equation 5-10 : 

 (XT
r ω Xr )dr =  XT

r ω (y - y′ (br)) 5-10 

 

Exercise 5.2b. First attempts at estimating parameters by nonlinear regression. 
Examine the changing values of the parameters and max-calculated-change: 

Throughout the 10 iterations, the absolute value of max-calculated-change remains very 
large (Fig. 5.5) compared to the TOL convergence criteria of 0.01, instead of gradually 
declining toward TOL, as should occur in a well-posed problem. In addition, max-
calculated-change oscillates between large positive values and large (absolute) negative 
values. These behaviors suggest that the regression is not well-posed, and that simply 
increasing the number of allowable iterations will not help the regression converge. The 
parameters associated with max-calculated-change for most of the iterations are HK_2 
and VK_CB.  

The changing parameter values in Table 5.4 show that the regression is trying to 
significantly decrease the values of these two parameters. These decreases are limited by 
the user-specified value of max-allowed-change equal to 2.0, which causes damping of 
parameter changes so that the maximum parameter change is ± 200 percent, and by 
MODFLOW-2000 prohibiting negative hydraulic conductivity values. (In MODFLOW-
2000, if the damped parameter change results in a negative value of a parameter that 
cannot physically be negative, the parameter is assigned a value two orders of magnitude 
lower than its starting value. In UCODE_2005, a similar effect can be obtained using the 
Constrain keyword in the Parameter_Values input block.) Overall, the behavior of max-
calculated-change and of the changing parameter values suggests that there may not be 
enough information provided by the observations to estimate HK_2 and (or) VK_CB. 
The sum of squared weighted residuals decreases each iteration (Fig. 5.5), but this does 
not necessarily indicate that the regression is behaving well. For diagnosing problems 
with the regression, the values of max-calculated-change and the parameters are 
generally more useful than are the sum of squared weighted residuals. 

Consider the composite scaled sensitivities: 

When calculated at the starting parameter values, the css for K_RB and VK_CB are less 
than two orders of magnitude smaller than that for HK_1, which has the largest css. This 
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suggests that the regression may have difficulty estimating K_RB and VK_CB, as 
discussed in Exercise 4.1b. The css calculated after iteration 2 for parameter HK_2 is 
much smaller, and for parameter K_RB is much larger, than the css calculated at the 
starting parameter values (Table 5.5). (The changing values of the css illustrate the model 
nonlinearity with respect to the hydraulic conductivity parameters; the values of HK_2, 
VK_CB, and K_RB calculated by the regression after iteration 2 are much smaller than 
their starting values and consequently the sensitivities differ.) The changed css for HK_2 
and K_RB are the reason that HK_2 instead of K_RB is associated with the largest value 
of max-calculated-change for several of the iterations. However, the css calculated at the 
more reasonable starting values should be used to guide decisions about how to improve 
the behavior of the regression. Thus, attention should be focused on parameters VK_CB 
and K_RB, rather than on HK_2. 

Exercise 5.2c. Assign prior information on parameters. 
Compare the regression performance with the results of exercise 5.2b: 

The regression performance of exercise 5.2c has improved significantly compared to that 
of exercise 5.2b. Table 5.6 shows that the absolute values of max-calculated-change 
decrease throughout the regression iterations, reaching the convergence criterion in five 
iterations. Max-calculated-change is less than max-allowed-change in all iterations. Note 
that the damping parameter is less than 1.0 in iteration 3. This occurs because max-
calculated-change oscillates from a negative value in iteration 2 to a positive value in 
iteration 3; see Appendix B for details about the calculation of the damping parameter in 
this situation. In this regression run, the parameter values are not changed by orders of 
magnitude, as occurred in exercise 5.2b, but rather change gradually and smoothly 
approach the optimal values. The sum of squared weighted residuals at the estimated 
parameter values is much smaller than in the final iteration of the run for exercise 5.2b. 

Reason that the two parameters with prior information have estimates that are nearly 
identical to the respective prior value: 

The estimated values of the parameters with prior information (VK_CB and K_RB) are 
nearly identical to the prior values because the observations provide very little 
information towards estimating these two parameters. In other words, the simulated 
equivalents of the observations are relatively insensitive to these parameters. There are no 
changed values of these parameters that significantly improve the fit to the observations 
and reduce the terms of the objective function related to the observations. Thus, the 
regression estimates values of these parameters that minimize the term of the objective 
function related to the prior information, which occurs when the parameter values are 
very close to the prior values. The parameter estimates are not exactly equal to the prior 
values because the observation data provide a small amount of information about the 
parameters – the values of observation sensitivities for VK_CB and K_RB are not exactly 
zero.  

Conclusion about whether the prior information is actually regularization: 

The prior information for this problem should be regarded as regularization. A coefficient 
of variation of 0.3 is used to calculate the weight for each parameter, which assumes that 
the limits of the 95-percent linear individual confidence interval on each prior value are 
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plus and minus about 60 percent of the value (two standard deviations, where the 
standard deviation is 30 percent of the prior value). Because of issues such as lack of 
data, heterogeneity, and differences between the scale of a measurement and the scale of 
a hydraulic conductivity zone in a model, prior hydraulic conductivity estimates are 
generally considered known only to within plus or minus an order of magnitude (e.g., 
plus or minus 100 percent).    

Exercise 5.2d: Parameter estimates and objective-function values 
The estimated values differ from the true values because the observations include 
measurement error, as described in Exercise 3.2d. The regression produces the best 
possible fit to these error-laden observations, not to the true values of hydraulic head and 
flow. When the estimated parameter values are used to calculate the fit to the true values 
without error, the fit is worse.  

Exercise 6.1a: Examine objective-function values 
Verification of the maximum-likelihood objective function value: 

Equation 3.3 for the maximum-likelihood objective function is: 

S′ (b) = (ND+NPR) ln2π - ln | ω | + eT ω  e 3.3 

ND is the number of observations, which equals 11, and NPR is the number of prior 
information equations, which equals 2.  

To calculate the ln |ω| term, note that the determinant of a diagonal matrix is the product 
of the diagonal elements. The weight for each of the head observations is 0.9975 and the 
weight for the flow observation is 5.165 (we omit the units of the weights here, because 
the natural log, which is dimensionless, appears in the maximum-likelihood objective 
function). 
The weight for the prior on K_RB is: 1.0/(0.3 × (1.2 × 10-3)2 = 7.716 × 106.  
The weight for the prior on VK_CB is:  1.0/(0.3 × (1.0 × 10-7)2 = 1.111 × 1015.  
Thus, ln |ω| = ln (0.997510 × 5.165 × [7.716 × 106] × [1.111 × 1015]) = 52.12.  

The eT ω  e term is the least squares objective function value, which equals 10.56. 

Substituting these values into equation 3-3: 

S′ (b) = (13)ln2π - 52.12 + 10.56 = -17.67.  

The value of the maximum likelihood objective function can be found near the bottom of 
the MODFLOW-2000 GLOBAL output file and the UCODE_2005 main output file. 

Explanation for why the objective-function values may not be the best indicators of model 
fit:  

The objective function values do not account for the drawbacks of adding additional 
defined parameters to the model. Objective function values will decrease (or possibly 
remain the same) as more parameters are added. However, adding parameters has the 
drawback of decreasing the confidence in the estimated parameter values, because the 
information provided by the calibration data is spread over more parameter values.  



 14

Exercise 6.1b: Demonstrate the circumstance in which the expected value of both 
the calculated error variance and the standard error is 1.0 (optional)  
Step (a) can be accomplished using many programs. For example, with Microsoft Excel 
uniformly distributed random numbers with a mean of zero can be generated using the 
function “rand(a,b)-(b-a)/2”, where a and b are the lower and upper limits of the uniform 
distribution, respectively. The variance of the distribution equals (b-a)2/12. Normally 
distributed random numbers can be generated using the function “norminv(rand(),0,σ)”, 
where σ is the standard deviation. 

The calculation in steps (2) through (4) can be expressed as: 
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where ai are the random numbers generated in step (1) and σ2 is the variance of the 
distribution.  

 
Generating 10, 100, 1,000, and 10,000 random numbers from a normal distribution with a 
mean of 0.0 and a variance of 1.0 produced the following values of s2.  

n s2 2
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χ
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10 1.717 0.49 3.08 
100 1.086 0.77 1.35 
1000 0.945 0.92 1.09 
10000 0.982 0.97 1.03 

 

Different values result from different sets of generated numbers, but two characteristics 
are consistent: (1) s2 tends to be close to 1.0, and (2) s2 tends to approach 1.0 as n 
increases. The expected variation in s2 as n increases can be calculated using equation 
6.2. For the population variance of 1.0 expected for the weighted residuals, the upper and 
lower 95-percent confidence interval limits on s2 are shown in the third and fourth 
columns of the table above.  

For step (6) of this exercise, the calculation can be expressed as: 
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where ai and bi are the random numbers in the two sets, 2
aσ and 2

bσ are the variances of the 
two distributions, and n is the number of generated values in each set. Generating 10, 
100, 1,000, and 10,000 random numbers from normal distributions with a mean of 0.0 
and variances of 1.0 and 4.0 produced the following values of s2.  
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n of samples from each distribution s2 
10 1.611 
100 1.011 
1000 0.979 
10000 0.988 

 

Exercise 6.1c: Evaluate calculated error variance, standard error, and fitted error 
statistics 
Comparing s2 to the expected value of 1.0: 

The calculated error variance s2 for the regression run of exercise 5.2c is 1.51. This value 
is fairly close to 1.0, but that is a subjective determination. The confidence interval on 
this value provides a more objective determination. Applying equation 6.2 using the 
results from the regression run of Exercise 5.2c, n = 11+2-6 = 7, and the chi-square 
values are given in the exercise. The calculated 95-percent confidence interval is 0.66; 
6.21. This interval contains the value 1.0, indicating that if the weighted residuals are 
random, then the value 1.51 does not significantly deviate from 1.0, and the model fit is 
consistent with the statistics used to calculate the weights. The randomness of the 
weighted residuals is assessed in Exercise 6.2. 

Calculation of the fitted standard deviation for heads:  

The standard deviation of measurement error for the head observations is 1.00251/2 m = 
1.0013 m, so the fitted standard deviation for heads equals 1.0013 m × 1.23 = 1.23 m. 
This value is very small compared to the total head loss over the system (between the 
hillside and the river) of about 75 m, indicating that the model provides an excellent 
overall fit to the head observations. 

Exercise 6.1d: Examine the AIC, AICc, and BIC statistics 
Verify the values of AIC and BIC, and calculate AICc:  

From equation 6.3b, the AIC statistic is AIC(b') = S'(b') + NP × 2. From Exercise 6.1a, 
S'(b') = -17.67, and NP=6. Thus, the value of the AIC statistic equals -17.67 + 12 = -5.67.  

From equation 6.4, the BIC statistic is BIC(b') = S'(b') + NP × ln(ND+NPR)  
= -17.67 + 6 × ln(11+2) = -2.28.  

From equation 6.3b, the AICc statistic is: 

AIC(b') = S'(b') + NP × 2  + 
)1(

))1(2(
−−+

+××
NPMPRNOBS

NPNP       

 

=  -17.67 + (6 × 2) + (2 × 6 × (6 + 1))/(11 + 2 – 6 – 1)  = 8.33. 

MODFLOW-2000 calculates the AIC and BIC statistics, whereas UCODE_2005 
calculates AIC, AICc, and BIC.  

For this model, AICc should be used instead of AIC, because NOBS/NP = 11/6 = 1.8 is 
less than 40. 
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Improvement in model fit needed to reduce values of AIC, AICc, and BIC: 

To determine the required improvement in model fit, first write the statistics with the 
maximum likelihood function (S'(b')) decomposed into its components: 

AIC =  (ND+NPR) ln2π - ln | ω | + S(b) + NP × 2  

AICc = (ND+NPR) ln2π - ln | ω | + S(b) + NP × 2  + 
)1(

))1(2(
−−+

+××
NPMPRNOBS

NPNP       

BIC = (ND+NPR) ln2π - ln | ω | + S(b) + NP × ln(ND+NPR)  

Then, substitute values for all terms except NP and the least squares objective function 
(here the notation S(b) is used for the least squares objective function, replacing the eTω e 
terminology that is used in equation 3.3). See the answer to exercise 6.1a for the 
calculation of terms of S'(b').   

AIC = -28.3 + S(b) +2NP 

AICc= -28.3  + S(b) + 2NP  + (2NP × (NP+1)/(12-NP)       

BIC = -28.23 + S(b) + 2.56NP 

For the AIC statistic to decrease when parameters are added, S(b) must decrease by an 
amount greater than 2.0 times the number of parameters added. 

The necessary decrease in S(b) for the AICc statistic to decrease when parameters are 
added is a nonlinear function of the number of parameters added. Substituting NP=1, 2, 
and 3 into the above equation for AICc indicates that S(b) must decrease by more than 
2.4, 5.2, and 8.7 for AICc to decrease when the number of added parameters is 1, 2, and 
3, respectively. 

For the BIC statistic to decrease when parameters are added, S(b) must decrease by an 
amount greater than 2.56 times the number of parameters added. 

Exercise 6.2a. Graph of weighted residuals versus weighted simulated values and 
the minimum, maximum, and average weighted residuals. 
Randomness of weighted residuals: 

The weighted residuals appear evenly distributed about zero. The weighted residuals for 
the flow observations and prior information are clustered near a weighted residual value 
of zero, which is curious, but is not an indication of nonrandomness. This behavior is 
explained in the answer for Exercise 6.2e, below. 

The weighted residuals for the flow and prior also are located in a different position on 
the horizontal axis from the weighted head residuals. This occurs because of the different 
weighted simulated values for the different data types, and is not problematic.  

Note that assessing randomness in this plot is made more difficult by the small sample 
size. Small samples that are actually drawn from random distributions can appear non-
random simply because of the small number of data points. 

Maximum, minimum, and average weighted residuals: 
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The minimum weighted residual is -2.05, the maximum weighted residual is 1.59, and the 
average weighted residual is 0.114. The minimum and maximum are not significantly 
larger in absolute value than other weighted residuals, indicating that the fit to these 
observations is not significantly worse than for other observations. If some of the smallest 
or largest weighted residuals are significantly larger in absolute value than others, this 
information can help to quickly identify parts of the model that might suffer from major 
construction problems, or observations that have been misinterpreted. The average 
weighted residual is small, but this is not necessarily an indication that the overall fit is 
good. In nonlinear regression, the average residual will usually be close to zero for the 
optimal parameter values. 

Exercise 6.2b. Graphs of observations versus simulated values. Examine the 
correlation coefficient R. 
Utility of the three different graphs shown in Figure 6-7: 

Figure 6.7a is a more useful graph for diagnosing problems with the regression than is 
Figure 6.7b or 6.7c. In Figures 6.7b and c, the wide range in the magnitudes of weighted 
or unweighted observed and simulated values obscures the details of problems with 
model fit.  

Evaluation of R: 

The value of R indicates an excellent match between the trends in the weighted simulated 
and weighted observed values. However, R is not a useful diagnostic statistic. Because of 
the wide range in magnitudes noted above, the plotted values will commonly lie close to 
a 45-degree straight line on graphs like those in Figures 6.7b and c, and the value of R 
will be very close to 1.0, even if there are problems with the model fit. 

Exercise 6.2c. Graphs of weighted residuals against independent variables. Evaluate 
runs statistic. 
Evaluation of spatial randomness of weighted residuals: 
Because of the small number of hydraulic-head residuals for this problem, it is very 
difficult to assess whether the weighted residuals are randomly distributed on the maps of 
the model domain. In this situation, it is more useful to assess whether any of the largest 
(in absolute value) weighted residuals are indicative of a significant problem with the 
model construction or with the calibration observations. 

Physical reasons for the three large weighted residuals in model layer 1: 

Two of the largest weighted residuals in model layer 1 are in column 4. Recall that in this 
flow system, simulated hydraulic heads are the same in any model column. Thus, it is 
impossible for the regression to closely match both of these observed values, which differ 
because they were generated by adding random noise to the head values calculated for the 
true system (see Exercise 3.2d). The result that the weighted residual for hd02.ss in row 
4, column 4 is positive and that for hd04.ss in row 13, column 4 is negative indicates that 
the regression estimated parameters that produce a simulated value in between the two 
observed values. The sum of the squared weighted residuals (terms of the objective 
function) for these two head observations will be smallest when the simulated value in 
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column 4 is roughly in between the two observed values than if the simulated value 
matches one observed value very well and the other very poorly.   

The third large weighted residual in layer 1 is associated with observation hd01.ss. This 
observation has small dimensionless scaled sensitivities for all model parameters, as 
shown in Table 4.1 and explained in the answer to Exercise 4.1b, and the simulated 
equivalent is largely controlled by the value of river stage. The observed value differs 
from the river stage because of the noise used to generate this value. Thus, the residual 
for this observation is essentially fixed at a value equal to the observed head minus the 
river stage, and it is impossible for the regression to estimate parameter values that would 
reduce this residual. 

Value of runs statistic and critical values graphed on a normal probability distribution: 
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Normal Probability Distribution

-1.96
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-1.28
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Conclusions about randomness of weighted residuals with respect to their order: 

Because the negative runs statistic is to the right of the lower tail critical values, we 
conclude that we can not reject the hypothesis that that the residuals are random with 
respect to the order in which they are listed in the observation data files. In effect, this is 
an indication that the residuals are random with respect to this order; however, because 
the runs statistic is evaluated in the context of hypothesis testing, it is necessary to state 
the conclusion as not rejecting the hypothesis, rather than accepting the hypothesis.  

Exercise 6.2d. Evaluate normal probability graphs and the correlation coefficient 
RN

2. 
Evaluation of the normality of weighted residuals: 

The residuals on the normal probability graph in Figure 6.11 do not lie in a straight line, 
because of the cluster of weighted residuals near zero that form a kink in the plot. These 
are the weighted residuals for the flow observation and the prior information. This full set 
of weighted residuals does not appear to be normally distributed. Based on this normal 
probability plot alone, it is not known whether the non-normality reflects correlation in 
the residuals caused by the fitting of the regression or other problems that might indicate 
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an inadequate model. The resolution to this issue is explained below in the answer to the 
Exercise 6.2e. 

2
NR , the correlation between ordered weighted residuals and normal order statistics, is 

0.941 for the weighted head and flow residuals (ND=11) and is 0.926 for the weighted 
head, flow, and prior residuals (ND+NPR=13). Table D.3 provides critical values of 2

NR  
above which the hypothesis cannot be rejected that the weighted residuals are 
independent and normally distributed. However, this table does not include critical values 
for the case in which ND or ND+NPR is less than 35, as indicated in the output file 
shown in Figure 6.12. With ND or ND+NPR equal to 35, the critical value of 2

NR  at a 
significance level of 0.05 is 0.943; the critical values decrease as ND or ND+NPR 
decreases.  

It is likely that 0.941 is larger than the critical value for ND=11, and that the hypothesis 
cannot be rejected that the head and flow weighted residuals are independent and 
normally distributed.  

The fit to the prior information is different, statistically, than the fit to the heads and 
flows, because the weighted residuals for both prior information values are very small. 
The smaller 2

NR  value of 0.926 for the set of residuals that includes the prior information 
indicates that the addition of these two weighted residuals produces a sample that is less 
normal and (or) independent. Because it is not known whether 0.926 would be larger than 
the critical value for ND+NPR=13, we cannot make a conclusion about the independence 
and normality of the full set of weighted residuals using the 2

NR  statistic.  

Comparison of generated sets of residuals to critical values: 

For the ten sets of 13 random numbers we generated, the 2
NR  values are 0.986, 0.937, 

0.990, 0.983, 0.979, 0.990, 0.964, 0.954, 0.944, 0.977. These values can be obtained by 
using a spreadsheet to explicitly calculate the terms of equation 6.18, or by using a built-
in spreadsheet function for calculating the correlation between two ordered sets of 
numbers. Using the critical value for a set of 35 numbers at 5-percent significance level 
(0.943), it is expected that 2

NR  will be less than the critical value 5 percent of the time, or 

for 0.5 sets. For our generated sets, 2
NR  is less than the critical value for one of the ten 

sets, which is roughly consistent with what is expected.  

Exercise 6.2e. Determine acceptable deviations from random, independent, and 
normal weighted residuals. 
Comparison of weighted residuals with generated independent and correlated random 
numbers: 

The distribution of weighted residuals versus weighted simulated values (Figure 6.7a) is 
much more similar to the graphs of correlated random numbers (Figure 6.13b) than to the 
graphs of independent random numbers (Figure 6.13a). This is because in Figure 6.7a and 
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in each of the graphs of Figure 6.13b, the values for flows and the prior are very close to 
zero.   

Similarly, the trends in the normal probability graph of weighted residuals (Figure 6.11) 
match those of the generated correlated random numbers (Figure 6.14b) more closely 
than those of the independent random numbers (Figure 6.14a). In the plots of correlated 
random numbers, there is a distinct kink at a value of about zero, which is consistent with 
the kink in the plot of weighted residuals. This kink occurs primarily because the 
weighted residuals for the flow observation and the prior estimates are close to zero.  

Reasons for the apparent lack of randomness and normality: 

In this simple flow model, we can explain why the weighted flow and prior residuals are 
each close to zero. The flow is the only observation preventing complete correlation, so it 
is matched closely in the regression. The prior estimates are on two parameters for which 
the observations provide little information, and so the regression matches the prior 
estimates closely. Additional explanation of this is given in the answer to Exercise 5.2c. 
Thus, certain characteristics of the flow system influence why these three weighted 
residuals are clustered near zero. These characteristics are represented in the sensitivities 
from which the expected correlations of weighted residuals are calculated, and, therefore, 
the plots of correlated random numbers resemble the weighted residuals more closely 
than plots of independent random numbers.  

The conclusions from this exercise indicate that the non-normal appearance of the 
residuals in Figure 6.11 can be explained by the fitting of the regression. Therefore, it is 
not necessary to search for problems with the model construction that might be causing 
this behavior of the weighted residuals.  

Exercise 7.1a. Evaluate composite scaled sensitivities. 
Differences between the initial and final css values:  

For nonlinear models, sensitivities of simulated values with respect to parameter values 
will differ when calculated at different parameter values. Therefore, the sensitivity 
components ( jk b/y ∂′∂ ) of the css calculation are different at the final parameter estimates 
compared to their values at the initial parameter values. The css calculation also involves 
scaling by the parameter values bj, and the final parameter estimates are different from 
the initial parameter values.  

Effect of nonlinearity and scaling: 

If the model is too nonlinear, and sensitivities are vastly different when calculated at 
different parameter values, then the css will not be very useful for guiding which 
parameters to estimate and which to specify. In this case, gradient methods might not be 
successful for performing parameter estimation and global optimization methods, 
discussed briefly in Section 5.2, might need to be used. If parameter values change 
significantly over the course of a regression run, then the scaling by bj can cause large 
differences in the css calculated at initial and final parameter values. This can potentially 
cause the css to underestimate or overestimate the information that the observations 
provide about a particular parameter. The modeler needs to consider this possibility when 
choosing parmeters to include or omit from the regression. 
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Considering attempting regression without prior information: 

The css in Figure 7.5b do not suggest that regression should be attempted without prior 
on K_RB or VK_CB. The final css values for these two parameters are still very small 
compared to those for the other four parameters.  

Explanation for small flow and prior weighted residuals: 

The small css for K_RB and VK_CB show that the head and flow observations provide 
little information about these two parameters. In the regression, there is therefore no 
reason for the estimates of K_RB and VK_CB to be different from their prior values. 
This is explained in more detail in the answer to Exercise 5.2c. 

Exercise 7.1b. Evaluate leverage statistics 
Comparison of the leverage statistics shown in Exercise 4.1e with those in Table 7.2 
indicates that the statistic for hd01.ss has drastically changed, from 0.99 to 0.00. This 
change is caused by the addition of prior information on parameter K_RB. With no prior 
information, observation hd01.ss is important to constraining the value of simulated head 
in the river cells, which in turn constrains the value of parameter K_RB (see answer to 
Exercise 4.1e), and prevents high correlations between several parameters. With prior 
information specified on K_RB, observation hd01.ss is no longer important to 
constraining its value and preventing correlations, and so it has no leverage. 

Comparison of the leverage statistics shown in Exercise 4.1e with those in Table 7.2 also 
indicates that the statistics for hd07.ss and hd09.ss remain large. 

Observation hd07.ss has high leverage because it is important to preventing high 
correlations among parameters HK_2, RCH_1, and RCH_2, as shown by comparing 
Tables 7.4 and 7.6. The correlations calculated without observation hd07.ss for parameter 
pairs HK_2 & RCH_1, HK_2 & RCH_2, and RCH_1 & RCH_2 are all greater in 
absolute value than 0.95, indicating that the regression might have difficulty converging 
to unique parameter estimates if observation hd07.ss were omitted. Its omission also 
causes correlations for pairs HK_1 & RCH_1 and HK_1 & RCH_2 to significantly 
increase in absolute value.  

Observation hd07.ss is located beneath the river in layer 2 (Figure 2.1b), and is important 
to reducing parameter correlations because of its role in constraining fluxes into the river 
cells in column 1, as discussed in the answer to Exercise 4.1d. Note that in the 
calculations for Exercise 4.1d, omitting observation hd07.ss did not produce significant 
increases in any pcc. This is probably because observation hd01.ss was more important 
then hd07.ss to constraining the fluxes beneath the river, as indicated by the large 
increases in pcc calculated with its omission. In this exercise, hd01.ss no longer plays an 
important role in constraining these fluxes, because of the prior information on K_RB. 
Therefore, hd07.ss plays a larger role, particularly in constraining the vertical flux from 
layer 2 to layer 1 beneath the river.    

As discussed in the answer to Exercise 4.1e, observation hd09.ss has large leverage 
because it has dimensionless scaled sensitivities for parameters HK_1, HK_2, RCH_1, 
and RCH_2 that are equal to or larger than those of any other observations (Table 7.5), 
owing to its distant location from the river. As discussed in the answer to Exercise 4.1c, 
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the flow observation has high leverage because it is the only observation that prevents 
complete correlation of the model parameters.  

Finally, the prior information, which was absent in the calculations for Exercise 4.1e, has 
very high leverage because it constrains the values of the insensitive parameters K_RB 
and VK_CB.   

Exercise 7.1c. Evaluate the importance using influence statistics 
Explanation of influential observations: 

Observations hd07.ss, hd09.ss, flow.ss, K_RB prior and VK_CB prior each have a 
Cook’s D value that is larger than the critical value of 0.308. All of these observations 
except for hd09.ss have DFBETAS values for at least four of the parameters that are 
larger than the critical value of 0.555. 

For this model the observations with large influence are identical to those with large 
leverage, and the discussion in the answer to Exercise 7.1b that explains the high leverage 
values in the context of sensitivities and preventing high correlation also explains the 
high influence statistics.  

This exercise and Exercise 7.1b illustrate that using the dimensionless and composite 
scaled sensitivities together with parameter correlations does not always reveal the 
observations most important to estimating the parameters. Observations with very small 
dss can have large values of leverage, DFBETAS and Cook’s D if they are important to 
reducing parameter correlations.  

Exercise 7.1d. Evaluate the uniqueness of the parameter estimates using correlation 
coefficients 
Most highly correlated parameter pairs: 

Parameter pairs HK_2 & RCH_2 (pcc = 0.91) and HK_2 & RCH_1 (pcc = -0.85) are 
most highly correlated. Hydraulic conductivity and recharge parameters typically have 
the largest correlations in ground-water problems, because of their relation in Darcy’s 
Law (see answer to Exercise 4.1c). However, these high correlations of 0.91 and -085 are 
not so large to indicate potential problems with nonuniqueness of the estimated 
parameters.  

Differences between correlations calculated at starting and final parameter values: 

The parameter correlations calculated at the final parameter values are different from 
those calculated at the starting values. This is expected, because the correlations are a 
function of the sensitivities, which for nonlinear models are different when calculated for 
different parameter values. 

Differences in parameter correlation coefficients calculated using perturbation and 
sensitivity-equation sensitivities: 

The two sets of parameter correlation coefficients are nearly identical. Differences result 
from the less accurate sensitivities calculated by UCODE_2005, and tend to be largest  
for coefficients related to insensitive parameters. The greatest differences occur for 
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parameter K_RB, which is the parameter with the smallest sensitivities, as shown in 
Figure 7.5b (note, however, that these differences are quite small). 

Exercise 7.1e. Detecting non-unique parameter estimates 
Part (1): Perform regression with flow observation omitted 

Regression run results: 

This regression run is ill-behaved. Throughout the 10 iterations, the value of max-
calculated-change does not gradually approach the TOL value of 0.01.  

Reason for high correlations: 

The explanation for the correlations from this run is given in the answer to Exercise 4.1c. 

Part (2): Test model nonuniqueness 

Starting the regression with the parameter values in sets 1 and 2 results in the same 
parameter estimates as were obtained when using the original starting parameter values. 
This is consistent with the conclusion from Exercise 7.1d that the highest parameter 
correlation (0.92) indicates parameter uniqueness is not likely to be problematic. 

The strength of this approach is that it uses regression runs to more definitively test the 
conclusions drawn from the parameter correlation coefficients. One weakness is that 
often it is not possible to test convergence for a wide range of different starting parameter 
values because as these values diverge from the original starting values, the regression 
becomes less well-posed, and may not converge.  

Exercise 7.1f. Evaluate the precision of the estimates using standard deviations, 
linear confidence intervals, and coefficients of variation 
Largest confidence intervals and coefficients of variation: 

Parameter HK_2 has the largest confidence interval; its size in terms of percent of 
estimated value is significantly larger than that for any of the other parameters. This 
parameter also has the largest coefficient of variation. The order of the relative sizes of 
the linear confidence intervals will always match the order of the relative sizes of the 
coefficients of variation. This is because the linear confidence interval is a linear function 
of the coefficient of variation. The confidence interval equals the estimated parameter 
value plus and minus a statistic from the student t-distribution times the standard 
deviation of the parameter, and the standard deviation equals the coefficient of variation 
times the parameter estimate.  

Relative uncertainty among the parameters:  

The relative sizes of the intervals show that HK_1 is the most precisely estimated 
parameter, and HK_2 is the least precisely estimated. For the remaining four parameters, 
RCH_1 and RCH_2 are estimated with slightly more precision than are K_RB and 
VK_CB. 

Percent of confidence intervals that include their true values: 

83 percent (five out of six) of the confidence intervals include their true values. This 
percentage is significantly smaller than 95 percent. The confidence interval for VK_CB 
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does not include its true value. Prior information was imposed for this parameter, and as 
discussed in the answer to Exercise 5.2c, the weighting used indicates that this prior 
should be considered regularization because this weighting reflects a smaller degree of 
uncertainty than is realistic. This causes the confidence interval calculated for VK_CB to 
underestimate the actual degree of uncertainty, and thus decreases the likelihood that the 
interval contains the true parameter value.   

Exercise 7.1g. Compare estimated parameter values with reasonable ranges. 
For parameters HK_1, K_RB, VK_CB, RCH_1, and RCH_2, the estimate and a large 
portion of the confidence interval lie within the reasonable range, indicating that the 
parameter estimates are reasonable. For parameter HK_2, the parameter estimate is near 
the lower limit of the reasonable range, there is a very high degree of uncertainty, and a 
large portion of the confidence interval lies outside the range. This result is similar to that 
described in Section 7.6 for parameter C. With this degree of uncertainty, it is 
inconclusive whether the parameter estimate is reasonable. Additional data about model 
features related to the HK_2 parameter and (or) additional observations are needed to 
resolve this question. The situation for HK_2 illustrates the importance of including 
confidence intervals in the analysis of parameter reasonableness. If the estimate of HK_2 
were considered without its confidence interval, we would probably conclude that the 
estimate is reasonable, and would neglect to pursue important additional information that 
could help produce a more certain parameter estimate.  

Exercise 7.1h. Evaluate the precision of the estimates using nonlinear confidence 
intervals 
Comparison of individual linear and nonlinear intervals: 

The linear 95-percent confidence intervals are always symmetric about the parameter 
estimate (for all parameters, the estimated value is shown as a value of 100 on the vertical 
axis in Figure 7.7), because they are calculated as the estimated value plus and minus a 
statistic times the parameter standard deviation. The nonlinear interval for HK_1 is 
approximately symmetric about the estimate, but for all other parameters, the nonlinear 
intervals are asymmetric about the parameter estimate. Nonlinear intervals can be 
asymmetric because the limits are obtained through simulations, rather than by an 
arithmetic expression that guarantees symmetry. The linear and nonlinear intervals are 
roughly equal in size for all parameters except HK_2, for which the linear interval is 
larger. 

Percent of confidence intervals that include their true values: 

All of the nonlinear 95-percent confidence intervals contain the true parameter value. In 
contrast, one individual linear interval (for VK_CB) does not contain its true value. This 
result is consistent with the fact that these intervals are more accurate than the linear 
intervals. 

Relative uncertainty among the parameters:  

The relative sizes of the nonlinear intervals are the same as for the linear intervals – 
HK_2 is the least certain parameter and HK_1 is the most certain parameter. 



 25

Exercise 7.2. Consider all the different correlation coefficients presented  
The equations for the three correlation coefficients are as follows: 
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The equations are similar in that the numerator is a covariance (or a covariance squared 
for 2

NR ) and the denominator is the product of the standard deviations (variances for 2
NR ) 

of the two variables involved in the covariance. They are also similar because absolute 
values of 1.0 result when the variables involved are coordinated with each other in some 
way. The coordination may be that the variables are equal, but other types of coordination 
produce the same result. For example, equation 6.11a can be used to show that R values 
approach 1.0 as simulated values approach being expressed as linear functions of the 
observed values. For example, if each simulated value equals its associated observed 
value plus 10, R equals 1.0.  

The equations are different in the variables involved and whether coordination between 
the variables is advantageous to model calibration. 

Exercise 7.3a: Test for linearity using the modified Beale’s measure 
Analysis of modified Beale’s measure: 

No. In contrast, the modified Beale’s measure indicates that the model is highly 
nonlinear, so the linear confidence intervals are not accurate.  

Use of nonlinear instead of linear intervals in Exercise 7.1g: 

Yes. In Exercise 7.1g it was concluded that it is inconclusive whether parameter HK_2 is 
reasonable, because although its estimate lies in the reasonable range of values, its linear 
confidence interval extends well outside of the reasonable range. In contrast, the 
nonlinear interval for HK_2 shown in Figure 7.8 more closely coincides with the 
reasonable range of values, and it can be concluded that the parameter estimate is 
reasonable. 

Change in the modified Beale’s measure when the prior weights are changed: 
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The modified Beale’s measure significantly increases when the weights on the two prior 
values are decreased (the coefficient of variations are increased). This larger value of the 
measure more realistically reflects the model nonlinearity.  

Exercise 7.3b: Test for linearity using total and intrinsic model nonlinearity 
Total model nonlinearity: 

No. The total model nonlinearity statistic is orders of magnitude larger than the value of 
0.09 below which it can be concluded that the model is effectively linear. This result is 
consistent with the analysis of the modified Beale’s measure, by which the model was 
also considered highly nonlinear. 

Intrinsic model nonlinearity: 

No. The model has a relatively small degree of intrinsic model nonlinearity. The value of 
0.142 is just slightly larger than the value of 0.09 below which it can be concluded that 
the model is intrinsically linear.  

Effect of decreasing the weights on the prior information: 

The total model nonlinearity increases substantially when the prior weights are decreased, 
whereas the intrinsic model nonlinearity stays about the same. The measures calculated 
with the decreased weights are more realistic than those calculated with the weighting 
that is considered regularization.  

Exercise 8.1a: Predict advective transport 
The advective path from the landfill goes to the supply well in the lower aquifer, and 
takes 0.457 × 1010 seconds, or 145 years, to reach the well. 

Exercise 8.1b: Determine the parameters that are important to the predictions using 
prediction scaled sensitivities and parameter correlation coefficients 
Answer to Question 2: 

The pss in Figure 8.8 show that overall, parameters RCH_2 and POR_1&2 are most 
important to all components of advective transport at all times. The css in this figure 
show that the head and flow observations provide substantial information about RCH_2, 
but provide no information about POR_1&2, because this parameter is not applicable to 
the flow model calibration. The conclusion from analyses of the pss and css is that 
additional information needs to be collected about POR_1&2. However, this parameter 
has a relatively large prior weight that reflects independent field data and indicates the 
parameter has small uncertainty. The weighting does not factor into the pss and css 
analyses, but does factor into the ppr calculations, as discussed in the answer to Exercise 
8.1c. 

The pcc in Tables 8.4 and 8.5 indicate that the estimates of all parameters except K_RB 
might be nonunique when the head and flow data alone are considered, but that the 
advective transport predictions require unique estimates of all parameters. This indicates 
that the prior information is essential for producing unique parameter estimates (compare 
Tables 7.6 and 8.4).   
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Pss close to zero for K_RB, VK_CB, and RCH_1: 

The pss for K_RB are nearly zero because the value of this hydraulic conductivity 
parameter is relatively large compared to the other hydraulic conductivity parameters in 
the flow system, and thus the sensitivity of simulated values to K_RB is small. The pss 
for RCH_1 are close to zero because this recharge parameter applies to, and only affects 
fluxes in, the left half of the aquifer, whereas the advective transport path lies almost 
exclusively in the right half of the aquifer. The pss for VK_CB are small because the 
advective transport path lies mostly in layer 1. The particle enters the confining unit at a 
time of 100 years, which is why the sensitivities at this time are larger. 

Pss for POR_CB: 

The pss for POR_CB are zero for all predictions at 10 and 50 years because the particle 
has not entered the confining unit at these times. The pss is non-zero only for prediction 
A100z, because the particle enters the confining unit at 100 years, and parameter 
POR_CB affects the particle transport time in the vertical direction only.  

Effective porosity parameter to include in additional analyses: 

The pss suggest that POR_CB has a very small effect on advective transport, and that it is 
reasonable to omit this parameter from further analyses of prediction sensitivity and 
uncertainty. In contrast, the advective transport predictions are highly sensitive to 
POR_1&2, and this parameter should be included in the additional analyses. 

Exercise 8.1c: Determine the parameters that are important to the predictions using 
the parameter-prediction statistic 
Comparison of pss and ppr results: 

There are significant differences between the pss results in Figure 8.8 and the ppr results 
in Figure 8.9a,b. The ppr results show that (a) parameters VK_CB and RCH_1 are very 
important to the predictions, whereas the pss results show that the predictions are 
insensitive to these two parameters. In addition, the ppr results show that POR_1&2 is 
not important to the predictions, but the pss show that the predictions are very sensitive to 
this parameter.  

According to the ppr results, all parameters except K_RB and POR_1&2 would be 
beneficial to further investigate for improving the predictions.  

Explanation of different rankings: 

The different rankings by the ppr and pss statistics can be explained by considering that 
the ppr statistic is a function of parameter uncertainty and correlation as well as of 
prediction sensitivity. The absolute values of the parameter correlation coefficients (pcc) 
for the calibrated model with prior information omitted (Table 8.4) are at least 0.97 for 
parameter pairs composed of two parameters from the set VK_CB, HK_2, RCH_1, and 
RCH_2 and are 0.90 for pairs involving HK_1 and one of these parameters. In contrast, 
the absolute value of all pcc involving K_RB are no greater than 0.40. Also, because 
POR_1&2 is not applicable in the flow model calibration, its correlation with all other 
parameters is 0.0.  
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The large pcc for parameters in the set VK_CB, HK_2, RCH_1, and RCH_2 strongly 
affect the ppr statistics. When potential new information is added on any one parameter 
in the set, the uncertainty of that parameter is reduced, and the uncertainty of all other 
parameters in the set also is substantially reduced. In contrast, adding the same level of 
new information on K_RB does not substantially reduce the uncertainty of any other 
parameters, and adding new information on POR_1&2 has no effect on the uncertainty of 
other parameters. This is the reason that parameters VK_CB, HK_2, RCH_1, and RCH_2  
have relatively large values of the PPR statistic, despite the insensitivity of the 
predictions to some of these parameters. 

The reason that prediction A100z has a large pss for POR_1&2 but a small ppr value is 
related to parameter uncertainty. Although the flow model observations provide no 
information about porosity, a large prior weight is used in the ppr calculations, which 
causes the standard deviation of POR_1&2 to be small. Decreasing this standard 
deviation by 10 percent produces a small absolute decrease, which translates to a small 
decrease in the uncertainty of A100z. 

Standard deviation decreases: 

Figure 8.9c shows that the absolute decreases in prediction standard deviations are 
smaller for prediction A100z than for predictions A100x and A100y. However, the 
decreases for A100x, A100y, and A100z are similar percentages of their respective 
transport distances of 5695 m, 3864 m, and 53.8 m. These results suggest that future data 
collection efforts can be guided by the ppr results. 

Parameter pairs most beneficial to simultaneously investigate: 

Figure 8.9d shows that it would be most beneficial to collect additional data on any 
parameter pair that does not include K_RB or POR_1&2.  

Exercise 8.1d: Determine the importance of existing observations using the 
observation-prediction statistic 
Identification of observations that rank as most important to predictions: 

Observations hd01.ss and flow01.ss rank as most important to the predictions by the opr 
statistic. 

Explanation for observation rankings by opr statistic: 

The dss in Table 7.5 and the pss in Figure 8.8 do not explain the importance of 
observations hd01.ss and flow01.ss. The dss indicate that the simulated values 
corresponding to these two observations are relatively insensitive to all the model 
parameters. The pss show that the predictions in at least one direction at 100 years are 
sensitive to parameters HK_1, HK_2, and RCH_1, but because of the small dss values for 
hd01.ss and flow01.ss, this does not help to explain the opr results. 

Evaluating the effect of omitting observations on the parameter correlation coefficients 
(pcc) does help explain the opr results. The largest opr values are associated with the 
flow observation. When the flow observation is omitted, all pcc equal 1.0, because with 
only head observations, all model parameters are perfectly correlated (see answer to 
Exercises 4.1c). Thus, removing this observation causes the maximum possible increases 



 29

in the pcc, as summarized in Table 8.6. This table also explains the large opr statistic for 
observation hd01.ss; its omission also causes large increases in pcc. The flow system 
dynamics that cause hd01.ss to strongly affect parameter correlations is explained in the 
answers to Exercises 4.1e and 7.2b.  

Evaluation of standard deviation increases: 

Figure 8.10b shows that when either hd01.ss or flow01.ss is omitted, the increases in the 
standard deviations for prediction A100z are substantially smaller than those for 
predictions A100x and A100y. However, as was the case for Exercise 8.1c, the 
uncertainty increases for A100x, A100y, and A100z are each very large compared to 
their respective transport distances of 5695 m, 3864 m, and 53.8 m. Thus, the absolute 
changes in prediction uncertainty do not alter conclusions about observation importance 
made using the opr statistic results.   

Exercise 8.1e: Assess the likely importance of potential new observations to the 
predictions using dimensionless and composite scaled sensitivities and parameter 
correlation coefficients 
Figure 8.11 shows that the potential head observation collected under pumping conditions 
provides substantial information about HK_1, HK_2, RCH_1, and RCH_2, relative to the 
information that the existing observations provide. In addition, comparison of Tables 8.4 
and 8.7b shows that the presence of this observation reduces extremely high parameter 
correlations associated with parameter VK_CB. This is because it would be collected 
under pumping stresses, and thus contributes information about vertical flows that is not 
provided by any of the existing observations. The potential flow observation provides 
only a small amount of new information relative to the existing observations. In addition, 
comparison of Tables 8.4 and 8.7a shows that the potential flow observation alone 
provides very little information towards reducing parameter correlations.   

The advective transport predictions are most sensitive to RCH_2 and POR_1&2 and are 
moderately sensitive to HK_1 and HK_2. Thus, according to this analysis using dss, css, 
pss, and pcc, the improved information about HK_1, HK_2, and RCH_2 that the potential 
new head observation provides would warrant collecting this additional data.  

Note that whereas the existing flow observation is essential for preventing complete 
correlation of all parameters, the potential new flow observation plays essentially no role 
in reducing correlations. This is because even though it is collected under a different flow 
regime, its role is somewhat redundant – complete correlation has already been prevented 
by the presence of the existing flow observation.   

Exercise 8.1f: Assess the likely importance of potential new observations to the 
predictions using the observation-prediction (opr) statistic 
The opr statistics in Figure 8.12 show that collection of the potential head observation is 
likely to contribute information important to most of the advective transport predictions, 
but that the collection of the potential flow observation is not likely to contribute 
important information. This conclusion is consistent with that drawn in Exercise 8.1e. 

The potential head observation has larger values of the opr statistic than does the flow 
observation primarily because of its role in reducing parameter correlations and because 



 30

it is sensitive to parameters to which the predictions are sensitive, as discussed in the 
answer to Exercise 8.1e. The potential new flow observation is relatively unimportant 
because it provides little sensitivity information and does not substantially reduce any 
correlations.   

Best locations within model domain for collecting new head data: 

The opr statistics in Figure 8.13 show that the best location for collecting new head data 
is in the roughly circular area around and to the right of the well.  

Using reductions in parameter correlation coefficients to help explain results: 

As shown by comparing Figures 8.13 and 8.14, the area with the largest opr statistics is 
roughly coincident with the area in which a potential new head observation would most 
reduce any pcc value that is greater than 0.90 in the calculation without potential new 
observations. This shows that in this model, the role of potential new head observations 
in reducing high parameter correlations is the main factor that produces large opr 
statistics. New head observations under pumping conditions most reduce the correlations 
for parameter VK_CB, because they provide information about vertical flows, and thus 
about the vertical hydraulic conductivity of the confining bed; this information is not 
provided by any of the existing observations in the model without pumping.  

Exercise 8.2a: Calculate linear confidence intervals on the components of advective 
transport. 
Why linear simultaneous intervals are larger than the linear individual intervals: 

As discussed in Section 8.4.1, simultaneous intervals account for uncertainty in more 
than one predicted quantity, whereas individual intervals account for uncertainty in only 
one quantity. Because of this, simultaneous intervals are always at least as large as 
individual intervals. 

Which type of interval is preferred representation of uncertainty: 

The simultaneous intervals are preferred, because they simultaneously account for 
uncertainty in all nine of the advective transport predictions.  

Answer to Question 5: 

The linear simultaneous intervals in Figure 8.15b show that in the x and y directions, the 
predicted advective transport path is moderately uncertain at 50 years, and is highly 
uncertain at 100 years. The intervals in the z direction shown in Figure 8.16 are 
moderately uncertain at 10 years and highly uncertain at 50 and 100 years. 

At 50 years, the confidence interval in the x direction is about twice the length of the 
particle transport distance, and in the y direction is about four times the transport 
distance. However, the total area covered by the confidence intervals in the x and y 
directions is relatively small and is confined to the upper right portion of the aquifer. In 
the z direction, the confidence interval extends over about 75 percent of the aquifer 
thickness.   

At 100 years, the area covered by the confidence intervals in the x and y directions 
extends over the entire model domain, and the interval in the z direction extends over the 
entire model thickness. Note that the captions for Figures 8.15b and 8.16 indicate that 
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these intervals also extend outside of the model domain; this is because the calculation of 
linear intervals does not take into account the physics of the flow system, and thus can 
include unrealistic values.  

Exercise 8.2b: Calculate nonlinear confidence intervals on the components of 
advective transport. 
The nonlinear simultaneous intervals in Figures 8.15d and 8.16 show that in the x and y 
directions, predicted advective transport is highly uncertain at 50 and 100 years, and in 
the z direction is highly uncertain at all times. In the x and y directions, the uncertainty 
represented by the nonlinear intervals is greater than that of the linear intervals for 
transport at 10 and 50 years. In the z direction, the nonlinear intervals are larger at 10 
years, about the same at 50 years, and substantially smaller at 100 years. 

The nonlinear intervals are preferred over the linear intervals because they are more 
accurate. They are calculated using model simulations, so that they include only realistic 
values. The particle projection method used in the ADV package can produce unrealistic 
values, but the modeler can filter out these unrealistic results when constructing the 
intervals, as is done in Figure 8.15d using dashed lines. The more accurate nature of the 
intervals is clearly shown by the result for the y and z components of transport at 100 
years. In the simulations used to calculate the intervals, the effect of the pumping well 
prevents particles from migrating in the y direction into the lower half (in plan view) of 
the aquifer, whereas the linear intervals cannot account for this constraint (compare 
Figures 8.15b and d). The simulations also keep the vertical location of the particle within 
the top and bottom elevations of the aquifer, whereas the linear intervals extend well 
outside of these elevations (Figure 8.16).  
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